
CENTER FOR THE PROTECTION OF INTELLECTUAL PROPERTY

CENTER FOR THE PROTECTION OF INTELLECTUAL PROPERTY

A Brief History of Software
Patents (And Why They’re Valid)

Adam Mossoff
SEPTEMBER 2013

Today, there is significant public debate over patents on
the digital processes and machines that comprise computer
software programs. These are often referred to as “software
patents,”1 but this is an odd moniker. Aside from the
similarly mislabeled debate over “DNA patents,”2 nowhere
else in the patent system do we refer to patents on machines
or processes3 in a specific technological field in this way;
for instance, people do not talk about “automobile brake
patents” or “sex toy patents” as their own category of
patents deserving of approval or scorn. (Yes, there are sex
toy patents, and there are infringement lawsuits in which
none other than Judge Richard Posner, a strident critic of
today’s patent system,4 ruled that a particular sex toy was
obvious and therefore unpatentable.5)

Unfortunately, the policy debates today about
“software patents” are rife with extensive confusion and
misinformation about what these patents are and even
about what “software” is. Even the Court of Appeals for the
Federal Circuit is deeply confused about these patents, as
evidenced by its highly fractured en banc decision in CLS
Bank v. Alice Corp.6 In 135 pages of numerous concurring
and dissenting opinions that accompany the one-paragraph
per curiam majority opinion, the CLS Bank court threw
patent doctrine in this booming, innovative industry into
even more disarray.7 Judge Lourie’s concurring opinion,
joined by a substantial number of his colleagues, essentially
argues that computer programs are unpatentable.8 In
her dissenting-in-part opinion, Judge Kimberly Moore
rightly observed that Judge Laurie’s opinion (and the
fractured CLS Bank decision itself) represents “the death
of hundreds of thousands of patents, including all business
method, financial system, and software patents as well as
many computer implemented and telecommunications
patents.”9 Commentators have been equally critical of CLS
Bank.10

Given the widespread confusing rhetoric and the
concomitant doctrinal upheaval, a little historical
perspective can be helpful and illuminating. First, knowing
the historical evolution of software patents—even in classic

“potted history” form11—is important because it reveals
that the complaints today about intellectual property
(IP) protection for computer programs are nothing new.
Opposition to IP protection for computer programs has
long existed—predating the Federal Circuit’s 1998 ruling
that business methods are patentable,12 predating the
Federal Circuit’s 1994 ruling that computer programs
are patentable as the equivalent of a digital “machine,”13
and predating the Supreme Court’s 1980 decision that a
computer program running a rubber vulcanization process
was patentable.14 In fact, computer programmers and
others initially opposed extending copyright protection to
computer software programs, as I will discuss shortly.

Second, this history reveals that the shift in legal protection
from copyright law in the 1980s to patent law in the 1990s
was not a result of strategic behavior or rent-seeking by
commercial firms who exploited their access to the halls
of power in Congress (or somehow duped the courts
into providing them the same legal protections). To the
contrary, this historical evolution from copyright to
patent law represented a natural legal progression as the
technology evolved from the 1960s up to the mid-1990s.
As it happens in our common law system — precisely
because it is designed to happen this way — legal doctrines
evolve in response to changes in innovative technological
products and commercial mechanisms that, through
the marketplace, spread these new technological values
throughout the world.

It bears emphasizing that this is a “potted history” (in a
non-pejorative sense). In a short essay I cannot recount
every historical detail, and space constraints will require
me to compress some developments into a simplified
version. Of course, one should consult more detailed
historical accounts of the digital revolution and its follow-
on revolutions. For example, I recommend T.R. Reid’s The
Chip (2001), which provides an engaging and accessible
recounting of the scientific and technological developments
that made the Digital Revolution possible.

A Brief History of Software Patents
(and Why They’re Valid)

ADAM MOSSOFF

2

CENTER FOR THE PROTECTION OF INTELLECTUAL PROPERTY

What is a “Software Patent”?
Before we can address the history, though, it is necessary to
get clear on what exactly we mean by a “software patent.”
One of the primary problems with the term “software
patent” is that, like other widely used terms in the patent
policy debates today,15 it lacks an objective definition. For
instance, many critics of “software patents” attack them as
patents on “mathematics”16 or patents on a “mathematical
algorithm,”17 but this is sophistry. As commentators have
repeatedly recognized, a word processing program like
Word for Windows or a spreadsheet program like Excel are
not the same thing as 2+2=4,18 and the fact that computer
programs use mathematics is an argument that proves
too much. All patented innovation uses mathematics; in
fact, physicists love to say that the universal language of
the universe is mathematics.19 So if taken seriously, the
argument that a “web browser, spreadsheet, or video game
is just math and therefore it’s not … eligible for patent
protection,”20 would invalidate all patents if applied
equally to other inventions, especially processes and
methods. All inventions of practically applied processes
and machines are reducible to mathematical abstractions
and algorithms (e.g., a patentable method for operating a
combustion engine is really just an application of the law
of PV=nRT, the principles of thermodynamics, and other
laws of nature comprising the principles of engineering).

Complicating things even further, the term “software
patent,” even when it is not being used in a way that
invalidates all patents, is often used to refer to many
different types of patented innovation. The term has been
used to encompass such inventions as electrical patents
and business method patents simply because the patented
innovation uses some type of computer software program
in its implementation. (As discussed in Hal Wegner’s
famous patent law listserv shortly after the GAO Report
was released, one concern with the GAO Report is its
surprising, and what many think is unrealistic, claim that

“By 2011, patents related to software made up more than
half of all issued patents.”21 This only makes sense if one
includes not just classic computer programs among total
issued patents, but any and all inventions that require some
type of computer program in their implementation.22)

For ease of reference given the ubiquity of this term in
the policy debates, I will refer to “software patents” in
this essay, but I will limit this term solely to patents on a
set of machine-readable instructions that direct a central
processing unit (CPU) to perform specific operations
in a computer.23 In short, “software” means a computer
program, such as a word processing program (e.g.,
Word), a spreadsheet (e.g., Excel), or even programs run
on computers on the Internet, such as Google’s search
algorithm, Facebook, eBay, etc. Of course, the reality is
far more complicated than this, but that’s not the point of
this essay.

In fact, few people realize the vast numbers of valid and
valuable patents on computer programs. The entire Internet
rests on patented innovation in computer programs: the
packet-switching technology used to transmit information
over the Internet was patented by Donald Watts Davies
(Patent No. 4,799,258). Robert Kahn and Vinton Cerf,
the inventors of the TCP/IP packet-switching protocol,
later patented their follow-on invention of a packet-
switching version of a knowbot24 (Patent No. 6,574,628).
Larry Page and Sergy Brin patented their famous search
algorithm when they were graduate students at Stanford,
and such patented innovation was a reason why Page and
Brin received venture-capital funding for their start-up
company, Google (there are several patents, but Patent
No. 6,285,999 is one of the core ones). There are slews of
other valid patents on technologically and commercially
valuable computer programs, such as an early one from

As commentators have repeatedly recognized, a

word processing program like Word for Windows

or a spreadsheet program like Excel are not the

same thing as 2+2=4, and the fact that computer

programs use mathematics is an argument that

proves too much.

[F]ew people realize the vast numbers of valid

and valuable patents on computer programs.

The entire Internet rests on patented innovation

in computer programs: the packet-switching

technology used to transmit information over the

Internet was patented by Donald Watts Davies

(Patent No. 4,799,258).

3

A Brief History of Software Patents (and Why They’re Valid)

1993 for one of Excel’s core spreadsheet functions (Patent
No. 5,272,628).

To understand why these and many, many other patents
on computer programs are both valuable and valid, it is
necessary to understand whence computer programs
came, how they changed in both their technological and
commercial function after the 1970s, and why patent law
was extended to secure this technological innovation in the
early 1990s.

The Digital Revolution
Our story begins in the early years of the Digital
Revolution with the invention of the integrated circuit in
1958-1959 (independently invented by Jack Kilby and
Robert Noyce).25 At that time, “software,” at least as we
now understand this term, did not mean what we think
this term means today. Software was designed for specific
computers and only for those computers. To wit, what
worked on a specific IBM mainframe did not work on a
DEC minicomputer (which was the size of a refrigerator).

(A young reader might ask, “Who is DEC?” Good
question, young man or woman! The Digital Equipment
Corporation (DEC) was one of the early leading firms
manufacturing computers in the high-tech industry in
the 1960s, ultimately bringing in multi-billion dollar
revenues.26 Its founder and CEO, Ken Olson, was admired
by a young Bill Gates.27 Olson also infamously said in
1977, “There is no reason for any individual to have a
computer in his home.”28 That’s why DEC is no longer
around and why young people today no longer remember
this company.)

The Copyright Controversy
Despite the start of the Digital Revolution a mere 60 years
ago, its early growing pains have become the equivalent of
“ancient history.” For this reason, many people no longer
remember that the protection of computer programs
under copyright—something accepted today as an
allegedly “obvious” legal alternative to patent protection
—was originally disputed rigorously by programmers
and others. The question of whether computer programs
were copyrightable was a tremendous flashpoint of
controversy for much of the 1960s and 1970s, which is
ironic given that people today blithely assert that we don’t
need patent protection for computer programs because

The significance of the PC Revolution is that

computer software programs now became separate

products that consumers could purchase, install,

and use on their PCs.

“copyright protection … makes patent protection mostly
superfluous.”29 (This claim is also false, as the historical
development makes clear and as will be explained shortly.)

Despite substantial controversy, in 1964 the Registrar of
Copyrights started to register copyright protection for
software code for computer programs.30 Although there
was no direct legal challenge to the Copyright Registrar’s
decision to begin registering copyrights for computer
programs, the public policy debates did not go away.31 The
controversy continued, especially in the courts, for almost
two decades,32 and it was not resolved until Congress
enacted the Computer Software Copyright Act of 1980,33
which specifically authorized the protection of software
code by the Registrar of Copyrights under the Copyright
Act. In sum, opposition to IP protection for computer
programs has existed from time immemorial, regardless of
whether it was copyright or patent.

The PC Revolution
It is significant that the Computer Software Copyright
Act was enacted in the early 1980s because it was during
this time—the late 1970s and early 1980s—that the
PC Revolution began (“PC,” for the uninitiated, means
Personal Computer). This is the point in time that marks
the shift away from hardware and software as a unified,
single product, to hardware and software as distinct
products. This is the revolution brought to us by the
young hackers and computer geeks of the 1970s—Steve
Jobs, Steve Wozniak, Bill Gates, Nathan Myrhvold, etc.—
who conceived, designed, and implemented the idea of an
operating system (OS) running on a CPU that could serve
as the operational platform for any computer program
written by anyone performing any tasks, such as playing
tic tac toe or blinking lights on a circuit board in a certain
pattern (just some of the original programs end-users could
write and operate in the 1970s) to the sophisticated word
processing, spreadsheet, and computer-assisted design
(CAD) programs that began to be sold and used on PCs
in the 1980s.

4

CENTER FOR THE PROTECTION OF INTELLECTUAL PROPERTY

The significance of the PC Revolution is that computer
software programs now became separate products that
consumers could purchase, install, and use on their PCs
(either an “IBM Compatible” or a Mac). In fact, computer
programs came in a box that consumers physically took off
shelves and purchased at checkout registers at retail stores,
such as at an Egghead Software outlet. (Egghead Software
closed all its retail stores in 1998 due to the dominance of
the Internet as a medium over which to order DVDs, and,
eventually, through which end-users now directly purchase
and download in 30 seconds their new software products
or apps.34)

The significance of a computer program becoming a
separate product is that the value in software, what the
consumer was seeking in purchasing it from the retailer,
was the function of the program as experienced by the
consumer (called an “end-user” in high-tech parlance). For
instance, it was the value in the ease of use of a graphical
user interface (GUI) of a particular word processing
program, such as Word for Windows, that made it more
appealing to consumers than the text-based commands of
older word processing programs, such as WordPerfect. Or
it was the pull-down menu in a Lotus1-2-3, the first widely
successful spreadsheet program. The end-user now had a
word processing program with many functions in it, such
as editing text, italicizing text, “cutting” and “pasting,”
changing margins for block quotes, etc. This was the
value in the product sold to the consumers, and thus this
function is what designers of computer programs competed
over for customers in the marketplace. For instance, few
people today remember the battle in the late 1980s and
early 1990s between WordPerfect (a text-based word
processor developed for the text-based command system
of DOS) and Word (a pull-down menu and button-based
“point and click” GUI word processor for the Windows
and Apple GUI OS).

This is not a radical or novel insight; it is a mundane fact
recognized by many who have worked in the high-tech
industry for the past several decades. Back in 2006, Nathan
Myhrvold recounted how even many people working in
the high-tech industry did not think that a company that
solely made software like Microsoft could succeed. In
1987, he explained that he attended a

big industry conference in the PC industry. And
there was a panel discussion I participated in—“Can
Microsoft Make it Without Hardware?” I swear.
Now, we had a proposition and the proposition was
that not only can you make software valuable without
hardware; software was actually a better business
without hardware, because if you separated yourself
off and you just became a software company you could
focus on making the software best….An independent
software company can target everybody’s stuff.35

What Myhrvold means by “target[ing] everybody’s stuff”
is that a company like Microsoft could succeed in selling
computer programs that provided functional value to a
vast array of end-users. Thus, for instance, Robert Sachs,
a patent attorney who specializes in high-tech innovation
and serves as an evaluator for high-tech standards, explains
that the “vast majority of value in software comes not from
some deeply embedded algorithm that can be protected
by trade secret. Rather, it comes from the creation of new
functionality that has immediate and apparent value to the
end user, whether that’s a consumer or an enterprise.”36

In the late 1980s and early 1990s, this amazing development
in new technology and new commercial intermediaries in
delivering new computer programs to consumers created
a problem: any programmer can easily replicate the GUI
or other features of a commercially successful computer
program—copying the valuable function of the program
—without copying the literal software code that created
this valuable function. In sum, the code becomes distinct
from the end-user interface or the function of the program
itself.

And there’s the rub (to paraphrase the Bard): copyright
protects someone only against copying of their literal
words, not the broader idea or function represented by
those words. In copyright law, this is the well-known legal
rule referred to as the idea/expression dichotomy (express
words are protected under copyright, but ideas are not).37

Any programmer can easily replicate the GUI

or other features of a commercially successful

computer program—copying the valuable

function of the program—without copying the

literal software code that created this valuable

function.

5

A Brief History of Software Patents (and Why They’re Valid)

It is also reflected in the equally hoary legal rule that
copyright does not protect utilitarian designs.38

This issue was brought to a head in the famous copyright
case of Lotus v. Borland.39 Lotus, the creator and owner of
the very famous spreadsheet program Lotus 1-2-3, sued
Borland in 1990 for copying Lotus’s innovative pull-down
menus in Borland’s spreadsheet program, Quattro Pro.
Lotus’s design of the pull-down menus in Lotus 1-2-3
—these are now standard in all GUI-based computer
programs—made it very efficient to use and this was a
major reason for its commercial success.

The Lotus case was active for five years, and ultimately
resulted in a trip to the U.S. Supreme Court, which split
4-4 in affirming the lower court (Justice Stevens recused
himself), and thus the Supreme Court didn’t hand down
a precedential opinion.40 As a result of the 4-4 split, the
lower appellate court’s decision (the Federal Court of
Appeals for the First Circuit) was affirmed by default. The
First Circuit held that Lotus could not copyright its pull-
down menus because these were a functional “method of
operation,” i.e., a utilitarian design, and not an expressive
text capable of receiving copyright protection.41 The First
Circuit and the four Justices who affirmed the First Circuit
were correct in applying long-standing and fundamental
copyright doctrine in denying copyright protection to the
functionality of a computer program.

By the mid-1990s, as represented in the famous Lotus v.
Borland case, it was clear that copyright could no longer
adequately secure the value that was created and sold in
software programs by the fast-growing high-tech industry.
The value in a software program is the functionality of the
program, such as Lotus 1-2-3, Excel, WordPerfect or Word
for Windows. This function was the reason why consumers
purchased a program, installed it and used it on their
computers, whether an Apple computer or a Windows
machine. But this functionality could be replicated using
myriad varieties of code that did not copy the original code,
and copyright did not protect the functional components
of the program that this code created for the end-user—
and for which the end-user purchased the program in the
first place.

The Shift to Patent Law
This simple legal and commercial fact—copyright could
not secure the real value represented in an innovative

computer program—explains why in the mid-1990s there
was a shift to the legal regime that could provide the proper
legal protection for the innovative value in a computer
program: patent law. As the Supreme Court has repeatedly
recognized in contrasting patents against other IP regimes,
such as copyright and trademark, “it is the province of
patent law” to secure “new product designs or functions.”42

In fact, this shift from copyright to patent law in the mid-
1990s mirrors the equally important shift in the early
1980s when the courts and Congress definitively extended
copyright protection to computer programs at the start of
the PC Revolution. At the time, neither legal development
was destined to occur by necessity, but, in retrospect, neither
development was a historical accident from the perspective
of the continuing success of the Digital Revolution. These
two legal developments served as the fulcrums by which
it was possible for inventors and innovating firms, such as
Apple, Microsoft, eBay, Google, etc. to commercialize these
newly created values. (See, e.g., the earlier-cited patented
innovation in computer programs, properly secured to
these companies, which made it possible for them to bring
such values to the marketplace and to everyone’s lives.)

At approximately the same time that the First Circuit and
Supreme Court came to the legally correct conclusion in
Lotus v. Borland that the functional value in the pull-down
menus was not copyrightable, the Court of Appeals for
the Federal Circuit expressly recognized that computer
programs were patentable as a digital “machine.” In its
now-famous 1994 decision in In re Alappat,43 the Federal
Circuit ruled that a specific computer program that
performed a specific and identifiable function for an end-
user was not an “abstract” claim to an unpatentable idea or
“algorithm.”44 To the contrary, such computer programs
were patentable inventions.45

In essence, the Federal Circuit recognized the basic truth
to which many firms in the high-tech industry owed

The value in a software program is the
functionality of the program, such as Lotus 1-2-3,
Excel, WordPerfect or Word for Windows. This

function was the reason why consumers purchased
a program, installed it and used it on their

computers.

6

CENTER FOR THE PROTECTION OF INTELLECTUAL PROPERTY

their existence: a computer program such as the Excel
spreadsheet program “is not a disembodied mathematical
concept which may be characterized as an ‘abstract idea.’”46
A computer program, such as Google’s search algorithm, or
a sub-program, such as an operation in Excel’s spreadsheet,
is the digital equivalent of “a specific machine.”47 In
sum, the invention of a word processing program is the
equivalent in the Digital and PC Revolutions of the
invention of a mechanical typewriter in the Industrial
Revolution. Similarly, an e-mail produced by the functions
of a word processing program in an email program, such as
Outlook or Eudora, is the digital equivalent of a physical
letter written by a typewriter and mailed via the U.S. Post
Office to its recipient.

Again, similar to the identification that the value in a
computer program is its functionality to the end-user, the
identification of the essential functional similarity between
a mechanical typewriter and a word processing program
is not particularly insightful or radical. As any computer
programmer will tell you, the functions of a program can
be performed perfectly in either software or hardware;
the functional operation between the two is a distinction
without a difference, except that a computer program is
less costly and more efficiently sold and used by end-users.
In fact, this equivalence between hardware and software is
exactly what happened for the first several decades of the
Digital Revolution before the invention of the integrated
circuit and before the PC Revolution. And for those of us
old enough to remember the very first word processors,
there was not much to them beyond what an electrical
typewriter could do in the 1970s and 1980s (including
correct spelling errors after a word was typed and other
formatting functions as well).

In sum, the functionality of binary code in a specific
computer program is in principle no different from the
functionality achieved in the binary logic hardwired into
computer hardware. The fact that both are easily identified
by firms, retailers and end-users confirms that the two can
be specific, real-world and useful products. This functional
equivalence between hardware and software further reflects
the fact that the difference between computer programs
(either in software or hardware) and the mechanical
machines they replaced is itself a distinction without
a difference — both have been innovative inventions
deserving of protection under the patent laws.

Conclusion
The Industrial Revolution gave us patented innovation
in sewing machines,48 typewriters, and telephones, and
the Digital and PC Revolutions have given us patented
innovation in word processors, email and ebooks. To
restrict the patent system to only the valuable inventions
of the nineteenth century is to turn the patent system on
its head—denying today’s innovators the protections of
the legal system whose purpose is to promote and secure
property rights in innovation.

In the words of the Supreme Court’s recent decision in
Bilski v. Kappos,49 patent law is a “dynamic provision
designed to encompass new and unforeseen inventions.”50
As the Bilski Court recognized, a physical-based “machine-
or-transformation test may well provide a sufficient basis
for evaluating processes similar to those in the Industrial
Revolution—for example, inventions grounded in a
physical or other tangible form. But there are reasons
to doubt whether the test should be the sole criterion
for determining the patentability of inventions in the
Information Age.”51

The American patent system has succeeded because it
has secured property rights in the new innovation that
has come about with each new era—and it has secured
the same property rights for all types of new inventions,
whether in the Industrial Revolution or in the Digital
Revolution. It is time to leave behind sophistical rhetoric,
such as “software patent,” and recognize that computer
programs are valuable inventions performing very real and
valuable functions for consumers the world over. This is
why people from all walks of life pay money to companies
like Apple, Microsoft, Dell, Cisco and many others to
purchase these programs. As made clear in Borland v.
Lotus, this is a real-world value that cannot and should
not be secured by copyright. It also cannot be secured
by trade secret because the functions of a program are
the publicly known capabilities sought by end-users (and
over which high-tech companies compete for customers).
As the history of the evolution of patent protection for
computer programs makes clear, this valuable innovation
can be secured only by the IP regime specifically designed
to secure functional value in new technological innovation
—the patent system.

7

A Brief History of Software Patents (and Why They’re Valid)

ENDNOTES
 1 See Wikipedia, Software patent debate (as of Sep. 19, 2013), http://en.wikipedia.org/wiki/Software_patent_debate.

 2 See Adam Mossoff, A Century-Old Form of Patent, N.Y. Times, Jun. 6, 2013, http://www.nytimes.com/
roomfordebate/2013/06/06/can-the-human-blueprint-have-owners/a-century-old-form-of-patent.

 3 See 35 U.S.C. § 101 (providing that “any new and useful process, machine, manufacture, or composition of matter”
is patentable).

 4 See Richard A. Posner, Why There are Too Many Patents in America, The Atlantic (July 12, 2013).

 5 See Ritchie v. Vast Resources, Inc. (d/b/a Topco Sales), 563 F.3d 1334 (Fed. Cir. 2009) (Posner, J.).

 6 717 F. 3d 1269 (2013) (en banc).

 7 See Semil Shah, Op-Ed., The Scale, Competitiveness, And Industrial Strategies in Mobile Computing, TechCrunch,
Sep. 8, 2013, http://techcrunch.com/2013/09/08/the-scale-competitiveness-and-industrial-strategies-in-mobile-
computing/ (describing vibrant, dynamic growth in the computer industry, especially in the last two years).

 8 CLS Bank, 717 F.3d at 1276-92.

 9 Id. at 1301.

 10 See John Kong, The Alice in Wonderland En Banc Decision by the Federal Circuit in CLS Bank v. Alice Corp,
IPWatchdog (May 14, 2013, 3:16 pm), http://www.ipwatchdog.com/2013/05/14/the-alice-in-wonderland-en-banc-
decision-by-the-federal-circuit-in-cls-bank-v-alice-corp/id=40344/.

 11 See MacMillan Dictionary, http://www.macmillandictionary.com/dictionary/british/potted (as of Sep. 16, 2013,
10:21 PM GMT).

 12 State St. Bank & Trust Co. v. Signature Financial Grp., 149 F. 3d 1368 (Fed. Cir. 1998).

 13 In re Alappat, 33 F. 3d 1526 (Fed. Cir. 1994) (en banc).

 14 Diamond v. Diehr, 450 U.S. 175 (1981).

 15 See Adam Mossoff, The SHIELD Act: When Bad Economic Studies Make Bad Laws, Center for the Protection of
Intellectual Property Blog (Mar. 15, 2013), http://cpip.gmu.edu/2013/03/15/the-shield-act-when-bad-economic-
studies-make-bad-laws/ (identifying how “patent troll” lacks any definition and is used non-objectively in patent
policy debates).

 16 See End Soft Patents, Software is math (as of Sep. 19, 2013), http://en.swpat.org/wiki/Software_is_math.

 17 This characterization of computer programs as merely “mathematical algorithms” is an unfortunate byproduct of
the Supreme Court’s decision in Gottschalk v. Benson, 409 U.S. 63 (1972), in which Justice William O. Douglas
described an invention of a fundamental software program for running all computers as an “algorithm.” Id. at 65
(“A procedure for solving a given type of mathematical problem is known as an ‘algorithm.’ The procedures set
forth in the present [patent] claims are of that kind.”). Justice Douglas thus concluded that the invented computer
program was an unpatentable abstract idea:

 It is conceded that one may not patent an idea. … The mathematical formula involved here has no substantial
practical application except in connection with a digital computer, which means that if the judgment below is

8

CENTER FOR THE PROTECTION OF INTELLECTUAL PROPERTY

affirmed, the patent would wholly pre-empt the mathematical formula and in practical effect would be a patent on
the algorithm itself.

 Id. at 71-72. This was an unfortunate misinterpretation of the nature of computer programs as such, and it has
caused much confusion in patent law about both computer programs and what makes them patentable inventions.
CLS Bank simply represents the nadir of this confusion. What is notable, as is made clear in this essay, is that
this confusion about the nature of computer programs in 1972 was perhaps understandable, if only because the
PC Revolution had not yet occurred and thus it was much harder for judges to understand what made computer
programs valuable as separate (patentable) inventions from the computer hardware on which they ran.

 18 See Gene Quinn, Groklaw Response: Computer Software is Not Math, IPWatchdog (Dec. 15, 2008, 6:30 am), http://
www.ipwatchdog.com/2008/12/15/computer-software-is-not-math/.

 19 Carolyn Y. Johnson, A talk with Mario Livio – Is Mathematics the Language of the Universe, Boston Globe, Feb. 8,
2009, http://www.boston.com/bostonglobe/ideas/articles/2009/02/08/a_talk_with_mario_livio/.

20 Timothy B. Lee, Software is Just Math, Forbes, Aug. 11, 2011, http:/www.forbes.com/sites/timothylee/2011/08/11/
software-is-just-math-really/.

 21 U.S. Gov’t Accountability Office, GAO-13-465, INTELLECTUAL PROPERTY: Assessing Factors That Affect
Patent Infringement Litigation Could Help Improve Patent Quality 21 (2013), http://www.gao.gov/products/GAO-
13-465.

 22 See Patent Statistics in the GAO Report, High Tech Intellectual Property Legal Blog (Sep. 18, 2013), http://blog.
hiplegal.com/2013/09/gao_softwarepatents/(“The problem, of course, is that there are no ‘exclusively software’
classes. So if an entire patent class is counted, it is extremely likely to include non-software cases as well.”). Wegner
and others also claim that the GAO actually made an outright error in its counting methodology. See Hal Wegner,
GAO Patent Litigation Report (con’d): “[P]atents related to software ma[ke] up more than half of all … patents, LAIPLA
(Aug. 2, 2013), http://www.laipla.net/gao-patent-litigation-report-cond-patents-related-to-software-make-up-
more-than-half-of-all-patents/ (“The GAO authors apparently counted 20,000 software patents instead of 2,000
under the methodology at p.12 n.27 (explaining Figure 1). Thanks to Greg Aharonian for sharing this information
with the patent community.”); http://www.global-patent-quality.com/GRAPHS/SoftElec.htm (reporting Greg
Aharonian’s statistics on issued patents that show that even the 2,000 number is almost twice the actual rate of
issuance of “software” patents).

 23 See Wikipedia, Software (as of Sep. 19, 2013), http://en.wikipedia.org/wiki/Software.

 24 See John Markoff, Creating a Giant Computer Highway, N.Y. Times (1990), http://www.nytimes.com/1990/09/02/
business/creating-a-giant-computer-highway.html.

 25 See T.R. Reid, The Chip: How Two Americans Invented the Microchip and Launched a Revolution 76-80 & 91-95
(2001).

 26 See Wikipedia, Digital Equipment Corporation (as of Sep. 19, 2013), http://en.wikipedia.org/wiki/Digital_
Equipment_Corporation.

 27 Bill Gates has written: “An inventor, scientist, and entrepreneur, Ken Olsen is one of the true pioneers of the
computing industry. He was also a major influence in my life and his influence is still important at Microsoft
through all the engineers who trained at Digital and have come here to make great software products.” Chloe
Albanesius, Computing Pioneer Ken Olson Dead at 84, PC Magazine, Feb. 8, 2011, http://www.pcmag.com/
article2/0,2817,2379648,00.asp.

9

A Brief History of Software Patents (and Why They’re Valid)

 28 See Joelle Tessler, Kenneth Olsen, Pioneering Founder of Computer Company, Dies at 84, Wash. Post, Feb. 9, 2011,
http://www.washingtonpost.com/wp-dyn/content/article/2011/02/09/AR2011020906305.html.

 29 Timothy B. Lee, The Supreme Court Should Invalidate Software Patents, Forbes, Jul. 28, 2011, http://www.forbes.
com/sites/timothylee/2011/07/28/the-supreme-court-should-invalidate-software-patents/.

30 See National Commission on New Technological Uses of Copyrighted Works, Final Report 82 (1979); Copyright
Office Circular 31D (Jan. 1965).

 31 See, e.g., Allen W. Puckett, The Limits of Copyright and Patent Protection for Computer Programs, 16 Copyright L.
Symp. 81, 104-05 (1968) (recognizing that there is limited copyright protection for some aspects of computer
programs but that “[s]ource programs embodied in punch cards or magnetic tape present a doubtful case”); Pauline
Wittenberg, Note, Computer Software: Beyond the Limits of Existing Proprietary Protection Policy, 40 Brooklyn L. Rev.
116, 117-18 (1973) (“With respect to computer software, such questions [about patent or copyright protection]
have been under discussion in both legal and trade journals and in the courts for nearly a decade; no clear answers
have emerged.”).

 32 Compare Data Cash Systems, Inc. v. JS&A Group, Inc., 480 F. Supp. 1063 (N.D. Ill. 1979) (holding object code is
not copyrightable) and Tandy Corp. v. Personal Micro Computers, Inc., 524 F.Supp. 171 (N.D. Cal. 1981) (holding
object code in ROM is copyrightable). See also Synercom Tech., Inc. v. Univ. Comp. Co., 462 F. Supp. 1003, 1014
(N.D. Tex. 1978) (holding software code “formats” is not copyrightable).

33 Pub. L. No. 96-517, 94 Stat. 3015, 3028 (1980).

34 See Wikipedia, Egghead Software (as of Sep. 19, 2013), http://en.wikipedia.org/wiki/Egghead_Software.

 35 Nathan Mryhvold, Invention: The Next Software, Intellectual Ventures, at 5 (2006), http://www.intellectualventures.
com/assets_docs/Invention_Next_Software_Transcript_2006_Speech.pdf.

 36 Robert R. Sachs, Applying Can Openers to Real World Problems: The Failure of Economic Analysis Applied to Software
Patents, Bilski Blog (Aug. 13, 2013), http://www.bilskiblog.com/blog/2013/08/applying-can-openers-to-real-world-
problems-the-failure-of-economic-analysis-applied-to-software-pat.html.

37 See Baker v. Seldon, 101 U.S. 99, 104 (1879) (“[T]he teachings of science and the rules and methods of useful
art have their final end in application and use; and this application and use are what the public derive from the
publication of a book which teaches them. But as embodied and taught in a literary composition or book, their
essence consists only in their statement. This alone is what is secured by the copyright.”); Morrisey v. Proctor &
Gamble Co., 379 F.2d 675, 678 (1st Cir. 1967) (“Copyright attaches to form of expression ….”).

38 See Baker, 101 U.S. at 102 (“[N]o one would contend that the copyright of the treatise would give the exclusive
right to the art or manufacture described therein. … That is the province of letters-patent, not copyright. The claim
to an invention or discovery of an art or manufacture … can only be secured by a patent from the government.”).

39 49 F.3d 807 (1st Cir. 1995), aff ’d by an equally divided Court, 516 U.S. 233 (1996).

40 Lotus Dev. Corp. v. Borland Int’l, Inc., 516 U.S. 233 (1996).

 41 Lotus, 49 F.3d at 815.

 42 Qualitex Co. v. Jacobsen Products Co., Inc., 514 U.S. 159, 164 (1995); Elmer v. ICC Fabricating, 67 F.3d 1571,
1580 (Fed. Cir. 1995) (“patent law, not trade dress law, is the principal means for providing exclusive rights in
useful product features”). See also Baker, 101 U.S. at 102 (“[T]he exclusive right to the art or manufacture …. is the
province of letters-patent, not copyright.”).

10

CENTER FOR THE PROTECTION OF INTELLECTUAL PROPERTY

43 33 F. 3d 1526 (Fed. Cir. 1994) (en banc).

44 Id. at 1545.

45 Id.

46 Id. at 1544.

47 Id.

48 See Adam Mossoff, The Rise and Fall of the First American Patent Thicket: The Sewing Machine War of the 1850s, 53
Ariz. L. Rev. 165 (2011).

49 130 S. Ct. 3218 (2010).

50 Id. at 3227.

51 Id.

11

A Brief History of Software Patents (and Why They’re Valid)

ABOUT THE AUTHOR

Adam Mossoff is Professor of Law and a Senior Scholar
and Co-Director of Academic Programs at the Center for
the Protection of Intellectual Property at George Mason
University School of Law. He has published extensively
on the history of patents, with his articles appearing in
the University of Pennsylvania Law Review, Cornell Law
Review, Boston University Law Review, and other journals.
His article on the first patent war, the Sewing Machine
War of the 1850s, has become an important part of the
public policy debates concerning patent litigation, patent
licensing, and patent pools, having been cited in the GAO
Patent Litigation Report (August 2013). He has presented
his research at many academic conferences, congressional
briefings, and professional conferences, as well as at the
PTO, the FTC, the DOJ, and the Smithsonian Institution.
He thanks Matt Barblan, Ron Katznelson, Michael Risch,
and Robert Sachs for comments and edits on earlier drafts
of this essay. Steven Tjoe and Wen Xie also provided
research and copy-editing assistance.

CENTER FOR THE PROTECTION OF
INTELLECTUAL PROPERTY

The Center for the Protection of Intellectual Property
(CPIP) at George Mason University School of Law
is dedicated to the scholarly analysis of intellectual
property rights and the technological, commercial and
creative innovation they facilitate. Through a wide array
of academic and public policy programming, including
conferences, roundtables, fellowships, debates, teleforum
panels, podcasts, and other events, CPIP brings together
academics, policy makers and stakeholders in the innovative
and creative industries to explore foundational questions
and current controversies concerning patents, copyrights
and other intellectual property rights. Ultimately, CPIP
seeks to promote balanced academic discussions grounded
in rigorous scholarship and to inform the public policy
debates on how securing property rights in innovation
and creativity is essential to a successful and flourishing
economy.

CENTER FOR THE PROTECTION OF INTELLECTUAL PROPERTY

George Mason University School of Law
3301 Fairfax Drive
Arlington, VA 22201

http://cpip.gmu.edu

Check out our blog at
http://cpip.gmu.edu/blog

Visit us on Facebook at
www.facebook.com/cpipgmu

Follow us on Twitter @cpipgmu

